Grundlagen Computernetze |
Prof. Jürgen Plate |
Während das Datex-Netz bis zur Schicht 3 hinauf definiert ist, umfaßt der Standard von Frame-Relay nur noch die Schichten 1 und 2. Die Eigenschaften in Stichpunkten:
Im Kontrollfeld (Header) werden auch keine expliziten Quell- und Zieladressen
angegeben, sondern ein virtueller Pfad und ein virtueller Kanal.
Ein virtueller Pfad (virtual path, VP) ist eine für kurze Zeit geschaltete
Verbindung, die während ihrer Existenz so aussieht wie eine richtige
Festverbindung (Standleitung). Dieser geschaltete Weg durch das Netz wird als
virtuell bezeichnet, weil er nicht permanent fest geschaltet ist, sondern nur für
die kurze Zeit der Datenübertragung.
Zur Kennzeichnung wird ihr ein VPI (virtual path identifier) als Bezeichnung
zugeordnet. Ein virtueller Kanal (virtual channel, VC) ist ein Übertragungskanal,
der genau wie der virtuelle Pfad nur während der Datenübertragung existiert.
Zur Kennzeichnung wird ihm ein VCI (virtual channel identifier) als Bezeichnung
zugeordnet.
Ein virtueller Pfad besteht aus mehreren virtuellen Kanälen, komplexe
Anwendungen können mehrere virtuelle Kanäle gleichzeitig belegen. Die
klassischen Standleitungen enthalten ebenfalls mehrere Übertragungskanäle,
doch können die virtuellen Kanäle bei ATM die virtuellen Pfade (Leitungen)
wechseln. Wenn beispielsweise zwei virtuelle Kanäle auf Pfad 1 ankommen, kann
Kanal 1 durchaus auf Pfad 2 und Kanal 2 auf Pfad 1 zum selben Zielnetz
geschaltet werden.
Bei der Wegewahl wird eine einfache Art des Routings verwendet, um die Datenpakete durch das Netz zu senden. Der Weg, den das Datenpaket durch das ATM-Netz zurücklegt, besteht dabei aus drei Hauptabschnitten:
ATM kann Datenströme unterschiedlicher Bitraten flexibel übertragen und vermitteln. Die Übertragungsrate ist skalierbar, d. h. Übertragungsbandbreite wird flexibel bereitgestellt. Jedem Endgerät kann statisch (also vorab) oder dynamisch (also bei konkretem Bedarf) Bandbreite zugewiesen werden, die Netzleistung wächst also mit. Durch die transparente Übertragung in den Zellen werden bei den Netzübergängen keine Gateways benötigt, um von LAN- auf WAN-Protokolle umzusetzen. ATM ist gleichermaßen für LANs, schnelle Backbones und WANs geeignet.
ATM ist verbindungsorientiert und baut immer eine Punkt-zu-Punkt-Verbindung auf. Für eine Übertragung muß also immer eine Verbindung zwischen zwei Stationen geschaltet werden (ATM basiert auf der Vermittlungstechnik). Klassische LANS sind verbindungslos, jede Station ist zu jeder Zeit mit allen anderen Stationen fest verbunden, alle teilen sich daßelbe Übertragungsmedium. ATM als LAN (lokales ATM, L-ATM) benötigt eine LAN-Emulation. So entsteht ein virtuelles Netz, bei dem das ATM-Netz mehreren TeiInehmern (Geräte/Software) ein nichtexistierendes LAN vorspiegeln muß. Dabei sind verschiedene Ansätze allerdings noch in Diskussion. Diese LAN-Emulationen arbeiten alle auf Schicht 2 des ISO-Schichtenmodells, dadurch eignen sie sich für routebare und nicht routebare Protokolle gleichermaßen. Aufgrund der Punkt-zu-Punkt-Orientierung gibt es auch Schwierigkeiten bei Broadcasts. Abhilfe könnte hier dadurch geschaffen werden, daß Switches die Broadcasts kopieren und an angeschlossene Endgeräte leiten.
Bekanntester, aber wenig populärer Ableger ist die Internet-Telefonie. Zwar läßt sich damit billig mit Gesprächspartnern in der ganzen Welt telefonieren, dies müssen lediglich ebenfalls über ein Internet-Telefon oder die entsprechende Software verfügen. Aber da der Datenstrom im Internet unberechenbar ist und es keine Zustellgarantie für Datenpakete gibt, leidet die Sprachqualität. Im eigenen Firmennetz hingegen lassen sich Netzlast, Traffic, Laufzeiten und Verbindungswege kontrollieren. Das ändert zwar nichts daran, daß IP an sich ausschließlich zur Datenübertragung entwickelt wurde. Das IP-Protokoll ist aber wesentlich flexibler, als es ihm viele zutrauen.
Firmen können Ihren gesamten internen Telefonverkehr über ihr Intranet kostenlos abwickeln. Privatanwendern und Firmen erschließen sich Kostenersparnisse bei Telefonaten ins Ausland oder zum Mobilfunknetz. Voice over IP stellt die erste Stufe der Konvergenz von Daten und Sprache dar. Die Sprachintegration auf der flexibleren EDV-Infrastruktur auf der Basis von IP bietet sich an. Die Schritte zur integrierten Telefonie bzw. der vollständigen Vereinigung der Kommunikationsplattformen sind:
Bei geringeren Kosten bietet die integrierte Telefonie bessere Leistung und ist bereits sehr stark auf die kommenden Geschäftsanwendungen ausgerichtet. Die Vorteile sind u. a.:
Zu einem kompletten Voice-over-IP-System gehört zunächst einmal eine TK-Anlage auf Softwarebasis. Als Kommunikationszentrale verwaltet sie die Berechtigungen und Profile der Nutzer. Sie stellt Verbindungen her und sorgt für die richtige Zuordnung, ohne daß die eigentliche Kommunikation über sie läuft. Der IP-Gateway ist der Mittler zwischen IP-Telefonie und der bisher genutzten Telefontechnologie wie etwa ISDN. Am Ende der Leitung im VoIP-Netz steht entweder ein IP-Telefon oder ein Computer mit Sound-Karte und IP-Telefonie-Software. Für die Sprachein- und -ausgabe wird ein Headset verwendet. Herkömmliche Telefone lassen sich aber mit einer Adapterkarte ebenso computertauglich anschließen.
Bei Datenpaketen kommt es nicht so sehr darauf an, in welcher Reihenfolge und
mit welcher Verzögerung sie übertragen werden. Der Empfänger speichert die
eingehenden Pakete und setzt sie wieder in der richtigen Reihenfolge zusammen.
Wird ein Paket beschädigt oder geht verloren, wird es erneut gesendet.
Das funktioniert nicht bei zeitsynchronen Daten wie Sprache oder Video. Deshalb
wurden im neuen IP-Standard, IPv6, zwei neue Sub-Standards implementiert: das
Reservation Protocol (RSVP) und das Realtime Transport Protocol (RTP). RSVP
erlaubt zwei Endpunkten einer Verbindung, bestimmte Parameter auszuhandeln,
darunter eine maximale Verzögerung (Delay) und einen minimalen Durchsatz. Das
IP-Netz garantiert mittels verschiedener Verfahren, daß diese als "Flowspec"
bezeichneten Quality of Service (QoS) eingehalten werden.
Am sichersten funktioniert das unter Verwendung des "Guaranteed-Service"-Verfahrens. Hierbei wird anderer Traffic im Netz unterbunden, sobald dieser die Flowspec gefährden könnte. Diesem starren, aber effizienten Verfahren steht "Controlled Load" gegenüber. Hierbei dürfen auch andere Stationen IP-Pakete solange senden, wie eine mittels Flowspec ausgehandelte Verbindung keine Beeinträchtigung in den vorgegebenen Parametern feststellt. "Controlled Load" bietet also mehr Dynamik und lastet das IP-Netz insgesamt besser aus. Ein Vorurteil ist, daß für Voice over IP Anwendungen bestimmte IP-Pakete mit Sprachdaten mittels RSVP priorisiert werden. Das stimmt nicht. RSVP dient nur zum Aushandeln und Überwachen der Verbindungsparameter. IP-Sprachpakete werden zwar in den meisten IP-Netzen von Routern und Switches vorrangig behandelt, allerdings ist diese Priorisierung meist herstellerabhängig und somit proprietär. Das birgt Probleme, wenn Netzkomponenten unterschiedlicher Hersteller im IP-LAN Voice-Daten transportieren soll.
Dem soll RTP entgegenwirken. Jedes IP-Paket erhält seit IP 6 zusätzlich
einen Zeitstempel (Time Stamp) mit der Entstehungszeit sowie eine Folgenummer (Sequence
Information). Dies erlaubt es dem Empfänger, Pakete nicht nur in richtiger
Reihenfolge, sondern auch zeitsynchron zusammenzusetzen. Das Real Time Control
Protocol (RTCP) koordiniert zudem Sender- und Empfängerprotokolle und sorgt für
Monitoring und Management von Echtzeitverbindungen.
Außerdem definiert RTP die Kodierung von Audiosignalen nach G.711 sowie G.723.
Hierbei handelt es sich um Codecs (Coding/Decoding), die von der ITU zur
analogen und digitalen Verschlüsselung von Sprache in Telefonnetzen definiert
wurden. G.711 entspricht in etwa dem ISDN-Standard, Sprachdaten werden mit einem
Datenstrom von 64 kbit pro Sekunde übertragen.
Für Voice over IP kommt G.711 jedoch nicht zum Einsatz, da sich die
Datenlast durch zusätzliche Komprimierung und bessere Abtastverfahren auf bis
zu 9,6 kbps drücken läßt (dies entspricht dem GSM-Standard). Verbreitet ist
vor allem das CELP-Verfahren (Codebook Excited Linear Predictive Coding), das
mit einem komplizierten mathematischen Modell der menschlichen Sprache arbeitet.
Als Ergebnis entsteht ein Datenstrom von 16 kbit pro Sekunde, der Telefonate in
ISDN-Sprachqualität überträgt.
Kombiniert mit Dualrate Speech Coding, definiert im G.723-Standard, genügt
sogar ein Datenstrom von nur 5,3 kbps. Außer der geringeren Netzlast bringt
dies den Vorteil, daß sich mehr Pakete puffern lassen, ohne die
Echtzeitbedingung zu gefährden. Die Qualität der Sprachübertragung im IP-Netz
gewinnt also, je kleiner die Datenrate für einen Sprachkanal ist.
Ein weiterer wichtiger Standard für Voice over IP kommt vom Videoconferencing. H.323 umfaßt sowohl eine Codec-Technologie (wie G.723) wie auch die Signalisierung und Verbindungssteuerung für Videokonferenzsysteme. Für IP-Telefonie wurden Teile des H.323-Standards übernommen. Über eine TCP-Verbindung wird zwischen Sender und Empfänger das Signalisierungsprotokoll H.245 ausgehandelt. Dies zeigt eingehende Rufe an und übermittelt Statusinformationen. Die Datenübertragung selbst erfolgt über UDP. TCP-Pakete werden dadurch bei jedem Hop auf Fehler kontrolliert und gegebenenfalls korrigiert beziehungsweise zurückgewiesen. UDP läßt diese Kontrolle aus, UDP-Pakete erreichen den Empfänger also schneller. Dafür muß der sich selbst um Fehlerkorrektur bemühen. Voice over IP kodiert hierzu entweder im selben Paket oder im Folgepaket Redundanz, aus der sich ein beschädigtes Paket beim Empfänger reparieren läßt, womit ein erneutes Senden defekter IP-Pakete vermieden wird. Zusätzlich erfolgt die Verbindungssteuerung einer Sprachübertragung im IP-Netz gemäß H.323 mit einem Q.931-konformen Signalisierungskanal. Dieser steuert die Sprachverbindung und ist für Funktionen wie etwa Makeln oder Rufnummernübermittlung zuständig.
Um Voice over IP im LAN einzuführen, müssen sämtliche Switches und Router die entsprechenden Protokolle von IPv6 auf dem ISO/OSI-Level 3 unterstützen. Wichtig sind vor allem die Verarbeitung von RTP sowie die Unterstützung von RSVP. Für Konferenzen und Videodaten (die mittels der selben Verfahren wie Sprache übertragen werden), wird außerdem das relativ neue IP-Multicast genutzt. Dabei kopiert eine Netzkomponente einen eingehenden Datenstrom eigenständig und sendet ihn an alle Empfänger weiter. Dies vermeidet zusätzliche Datenkanäle zwischen dem Ursprung der Übertragung und jedem Empfänger. Statt dessen wird der Datenfluß an beliebiger Stelle im Netz dupliziert.
Um den einzelnen Arbeitsplatz dann per LAN mit Telefonfunktionen zu versorgen, fehlt es noch an entsprechenden Endgeräten. Mittlerweile gibt es erste Ethernet-Telefone. Diese werden statt an eine Telefondose an eine RJ-45-Buchse eines Ethernet-Hubs angeschlossen. Alternative hierzu bieten sich CTI oder Wandlerkarten an.
Die ersten "Radio LANs" arbeiteten überwiegend mit dem gegenüber Störungen relativ unempfindlichen Spread-Spectrum-Verfahren, bei dem die Daten auf viele Trägerfrequenzen verteilt werden, typisch auf einen Bereich von 20 MHz bei einer Datenrate von 2 MBit/s. Das Spreizen des Signals erfolgte entweder mit dem Zufallssystem Direct Sequence Spread Spectrum (DSSS) oder durch das zyklische Springen zwischen mehreren Frequenzbändern (FHSS, Frequency Hopping Spread Spectrum). Sicherheitshalber werden die Daten verschlüsselt.
Technisch entsprechen diese Netze einem Bus-System ohne Kabel oder die Schnurlos-Stationen bilden zusammen eine Bridge. Seit 1997 werden Funk-LANs mit 1 oder 2 MBit/s im 2,4-GHz-Bereich mit der Norm IEEE 802.11 standardisiert. Als Sendeleistung ist maximal 1 Watt vorgesehen. Die Reichweite innerhalb von Gebäuden beträgt etwa 50 m, außerhalb davon einige hundert Meter. Neuere Entwicklungen erreichen bei 19 GHz bis zu 10 MBit/s, allerdings bei deutlich kleinerer Reichweite.
Mit IEEE 802.11 (Teil der Standardisierungsbemühungen des IEEE 802 Komitees, zuständig für lokale Netzwerktechnologien) ist nun ein erster Standard für Funk-LAN-Produkte geschaffen worden. Mitte 1997 wurde der erste IEEE 802.11 Standard (2 Mbit/s Funk-LAN-Technologie) veröffentlicht, welcher dann, im Oktober 1999, mit IEEE 802.11b (High Rate) um einen Standard für 11-Mbit/s-Technologie erweitert wurde. Der IEEE 802.11 Standard beschreibt die Übertragungsprotokolle bzw. Verfahren für zwei unterschiedliche Arten, Funk-Netzwerke zu betreiben.
Der 802.11 Standard basiert auf CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance). Der WLAN Standard ist ähnlich aufgebaut wie der Ethernet-Standard 802.3, verfügt aber über Vorkehrungen um Kollisionen zu minimieren. Der Grund liegt darin, daß z.B. zwei mobile Einheiten zwar von einem Access Point erreicht werden, sich aber gegenseitig nicht „hören". Damit kann die wirkliche Verfügbarkeit des Access Points nicht in jedem Fall erkannt werden.
Das erste Funk-Netz-Szenario beschreibt die Kommunikation in einfachen "Ad-hoc"-Netzwerken. Hierbei sind mehrere Arbeitsrechner in einem begrenzten Sendebereich miteinander verbunden. Zentrale Übermittlungs- bzw. Kontrollsysteme, sogenannte "Access-Points" sind bei diesem Anwendungsfall nicht vorgesehen. Ein derartiges "Ad-hoc" Netzwerk könnte zum Beispiel zwischen den tragbaren Computersystemen während einer Besprechung in einem Konferenzraum aufgebaut werden.
Im zweiten Anwendungsfall, der im IEEE 802.11 Standard beschrieben wird, kommen sogenannte "Access-Points" zum Einsatz. Bei diesen Geräten handelt es sich um Netzwerkkomponenten, welche die Kommunikation innerhalb eines Funk-LANs, zwischen einzelnen Funk-LAN-Zellen und die Verbindung zwischen Funk-LANs und herkömmlichen LANs (Kabel basierend) ermöglichen und kontrollieren. Access-Points regeln die "gerechte" Verteilung der zur Verfügung stehenden Übertragungszeit im Funk-Netzwerk. Des Weiteren ermöglichen diese Komponenten mobilen Arbeitsstationen das unterbrechungsfreie Wechseln (Roaming) von einer Funk-LAN-Zelle in die Nächste.
Verschiedene Systeme können mittels einer speziellen Frequenzwahl bis zu acht unterschiedliche Kanäle im Frequenzband alternativ oder teilweise auch gleichzeitig nutzen. Durch dieses Verfahren können in bestimmten Fällen z. B. auch durch Störungen belastete Frequenzen umgangen werden, um so die Übertragung zu sichern. Des weiteren können durch den Einsatz mehrere Accesspoints parallele Funkzellen auf unterschiedlichen Frequenzen aufgebaut werden und so die Gesamtübertragungskapazität eines WLANs erweitern. Die dadurch entstehende Möglichkeit unterschiedliche Frequenzen zur Datenübertragung mit getrennten Benutzergruppen zu nutzen, kann den Datendurchsatz in einem solchen Funknetz vervielfachen, da die einzelnen Frequenzsegmente jeweils die volle Bandbreite für den Datenstrom zur Verfügung stellen.
Eine wichtige Frage, die sich im Hinblick auf den Einsatz von
Funk-Technologie immer wieder stellt, ist die mögliche gegenseitige Störung
von elektronischen Geräten (nicht nur von Funk-Sendern und Empfängern).
Oftmals werden sogar Bedenken zu einem möglichen Gesundheitsrisiko durch die
Nutzung von auf Funk basierenden Produkten geäußert.
Auf Funk basierende Geräte müssen einer Vielzahl von Standards und strengen
gesetzlichen Richtlinien entsprechen, die sicherstellen, daß die Beeinflussung
zwischen verschiedenen auf Funk basierenden Geräten und auch anderen
elektronischen Geräten entweder unmöglich ist, oder die festgelegten
Grenzwerte nicht überschreiten, welche die internationalen und nationalen bzw.
europäischen Standardisierungs-Gremien festlegen.
Alle in Deutschland zugelassenen WLAN Systeme benutzen ein offiziell für industrielle und andere Zwecke reserviertes ISM-Frequenzband (Industrial Scientific Media) zwischen 2,400 und 2,483 GHz und übertragen durch Nutzung eines Teils der darin verfügbaren Frequenzen mit Datenraten von bis zu 11 Mbps. Da IEEE 802.11 Funk-LAN-Produkte speziell für den Einsatz in Büros und anderen Arbeitsumgebungen entwickelt wurden, senden sie auch mit einer entsprechend niedrigen, gesundheitlich unbedenklichen Leistung. Diese Leistung liegt unter einem maximalen Wert von 100 mW und damit z. B. signifikant unter der Sendeleistung von gebräuchlichen GSM Telefonen (ca. 2 W bei Geräten GSM Klasse 4, d. h. Frequenzbereich 880-960 MHz). Erhöhte Gesundheitsrisiken konnten deshalb beim Umgang mit Funk-LANs im 2.4 GHz Frequenzband nicht festgestellt werden.
Die größten Bedenken gelten üblicherweise der Technologie Funk selbst. Aber unberechtigtes "Mithören" erweist sich in der Praxis sogar als wesentlich schwieriger und aufwendiger als bei herkömmlichen auf Kupferkabeln basierenden Netzwerken. Sogenannte "Walls" sichern den Datenverkehr mittels eines Verfahrens zur Bandspreizung (Spread-Spectrum, SS) gegen Abhören und Störungen, dieses Verfahren entspricht einer komplexen Kodierung, die ein Abhören schon durch die eingesetzten technischen Prinzipien sehr schwer macht. Alle z. Zt. bekannten zugelassenen WLAN Systeme setzen zwei verschiedene Techniken ein, das sogenannte Direct Sequence SS (DSSS) und das Frequency Hopping SS (FHSS) Prinzip.
Direct Sequence SS verschlüsselt jedes Bit in eine Bitfolge, den Chip, und sendet diesen auf das Frequenzband aufgespreizt. Für unbefugte Lauscher verschwindet das Signal dadurch im Hintergrundrauschen, erst der autorisierte Empfänger kann es wieder ausfiltern. Das DSSS System ist unempfindlicher gegen Störungen und hat sich als Lösung mit den meisten installierten Geräten in diesem Markt durchgesetzt.
Beim Frequence Hopping vereinbaren Sender und Empfänger während des Verbindungsaufbaus eine Folge, nach der einige Male pro Sekunde die Sendefrequenz umgeschaltet wird. Ein nicht autorisierter Zuhörer kann diesen Sprüngen nicht folgen, die Synchronisation zwischen Sender und Empfänger bedeutet jedoch zusätzlichen Ballast (Overhead) in der Datenübertragung.
Um das komplette Signal erfolgreich empfangen und interpretieren zu können, muß der Empfänger den korrekten Entschlüsselungsalgorithmus kennen. Daten während der Übertragung abzufangen und zu entschlüsseln wird dadurch recht schwierig. Die Sicherheit von IEEE 802.11 Funk-LAN-Produkten beschränkt sich selbstverständlich nicht nur auf die Wahl von DSSS als Übertragungsverfahren. So sieht der IEEE-802.11-Standard optional auch verschiedene Methoden für Authentisierung und Verschlüsselung vor. Unter Authentisierung versteht man dabei all jene Mechanismen mit denen überprüft bzw. kontrolliert wird, welche Verbindungen im Funk-LAN zulässig sind. Mit der zusätzlichen Verschlüsselungstechnik WEP (Wired Equivalent Privacy), welche auf dem RC4-Verschlüsselungsalgorithmus basiert, wird ein Sicherheitsniveau erreicht, welches dem herkömmlicher LAN-Technologien mehr als entspricht. Als weitere sehr flexible Sicherheitsfunktion, erweisen sich auch Filter auf MAC-Adress-Ebene, die im Access-Point konfiguriert werden können. Über diese Filter kann die Kommunikation über den Access-Point sehr wirkungsvoll gesteuert werden.
Funk-LAN-Technologie und -Produkte ergänzen in idealer Weise die "klassischen" LAN-Lösungen. IEEE-802.11-konforme Produkte zu attraktiven Preisen gibt es heute in Ausführungen, welche Bandbreiten von 2 Mbit/s oder 11 Mbit/s unterstützen. Schon 2-Mbit/s-Lösungen verfügen über eine ausreichende Übertragungsleistung, um herkömmliche Netzwerkanwendungen zu ermöglichen. Beispiele für solche Anwendungen sind die gemeinsame Nutzung von Druckern, File-Transfer, Internet und E-Mail. Bandbreite wird jedoch dann zu einem entscheidenden Faktor beim Einsatz von Funk-LAN-Installationen, wenn eine große Anzahl von Arbeitsstationen angebunden werden soll und der Einsatz sehr "bandbreitenintensiver" Multimedia-Anwendungen geplant ist. 11-Mbit/s-Produkte bieten hierbei ein verbessertes Lastverhalten. Jedoch sollte man nicht übersehen, daß Funk-LAN-Technologie sich wie jedes andere "Shared-Medium" verhält und damit sehr ähnlich zu Ethernet-Lösungen ist.
Ein weiterer wichtiger, zu beachtender Aspekt bei Planung und Einsatz von Funk-LAN-Lösungen, liegt in den oftmals schwer einschätzbaren Umgebungseinflüssen, welche die Übertragungsqualität und Übertragungsreichweite vermindern können. So können Reichweite und Qualität der Übertragung nicht nur durch die Positionierung und Anordnung der Arbeitsstationen und Access-Points beeinflusst werden, sondern es entsteht auch eine, zum Teil gravierende, Beeinträchtigung durch die zu durchdringenden Hindernisse (Ziegelwände, Stahlbeton, etc.).
Zur Komplettierung des Hiperlan/1-Standards wurde ein neues Projekt gestartet, um die drahtlose Version von ATM zu definieren. Dieses drahtlose ATM-Projekt ist unter der Bezeichnung Hiperlan Type 2 (Hiperlan/2) bekannt, und dieses scheint in der Industrie auf deutlich höheres Interesse zu stoßen, als Typ 1. Die drahtlose ATM-Variante unterstützt natürlich die gleichen QoS-Parameter wie die drahtgebundene Version. Außerdem verfügt Hiperlan/2 über zahlreiche Sicherheits-Services und das so genannte Hand-over - wenn eine Bewegung zwischen lokalen Bereichen und Weitbereichen oder von firmeninternen nach öffentlichen Umgebungen stattfindet. Hiperlan/2 hat eine sehr hohe Übertragungsrate, die auf dem physikalischen Layer bis zu 54 MBit/s und auf Layer 3 bis zu 25 MBit/s beträgt. Um diese zu bewerkstelligen, macht Hiperlan/2 von einer Modulationsmethode Gebrauch, die sich Orthogonal-Frequency-Digital-Multiplexing (OFMD) nennt.
Für die Realisierung eines Hiper-LAN/2-Netzwerks stehen zwei Betriebsarten zur Verfügung:
Inzwischen ist allein durch das Erlauschen des Datenverkehrs ein passiver Angriff auf WEP mit handelsübliche Hardware und frei erhältliche Software gelungen. Er beruht auf der Tatsache, daß WEP einen berechneten und nicht einen zufälligen Initialisierungsvektor im Klartext überträgt. So kann aus den erlauschten Daten der bei WEP verwendeten Schlüssel errechnet werden. Nach Schätzungen dauert das Berechnen eines 40-Bit-WEP-Schlüssels eine Viertelstunde, die bessere 128-Bit-Variante mit 104 Bit langem Schlüssel würde nur rund 40 Minuten dauern.
Für die Absicherung von Funknetzen bleiben damit nur Techniken, wie sie in Virtual Private Networks (VPNs) gebräuchlich sind - also Verfahren, die auf höheren Netzwerkebenen greifen. Das erfordert allerdings einige Umstellungen: Anstatt die Access Points schlicht in die bestehende LAN-Infrastruktur zu integrieren, muss man ein separates Netz für sie aufbauen. An einem Übergabepunkt zwischen WLAN und LAN muss dann die Zugriffsberechtigung überprüft werden. Man sollte dabei nicht nur von der normalen Benutzerverwaltung getrennte Passwörter verwenden, sondern diese möglichst lang machen. Deutlich sicherer geht es mit IPsec.
Ein Bluetooth-Netz ist aus einzelnen Blasen, sogenannten Piconets, aufgebaut, die jeweils maximal acht Geräte aufnehmen. Damit auch mehrere Teilnehmer drahtlos kommunizieren können, treten bis zu zehn Piconets eines Empfangsbereichs miteinander in Kontakt. Der Gründer eines Teilnetzes, nämlich das Gerät, welches die erste Verbindung herstellt, nimmt unter den übrigen Mitgliedern eine primäre Stellung ein und gibt die innerhalb des Piconet gebräuchliche Sprungfolge vor. Damit die anderen Geräte Schritt halten, schickt der Master Synchronisationssignale. Außerdem führt er Buch über die drei Bit langen Mac-Adressen der Piconet-Teilnehmer und versetzt diese nach Bedarf in eingeschränkte Betriebszustände.
Den Aufbau einer Verbindung übernimmt das Software-Modul "Link-Manager". Dieses entdeckt andere Link-Manager in einem Empfangsbereich, mit denen es über ein eigenes Protokoll, das Link-Manager-Protokoll, Daten austauscht. Das Modul authentifiziert Geräte, behandelt Adreßanfragen, verfügt über eine einfache Namensauflösung und sendet und empfängt Anwendungsdaten. Darüber hinaus handelt es mit dem Kommunikationspartner den Verbindungstyp aus, der bestimmt, ob Sprache oder Daten über den Äther gehen. Auch an die Sicherheit haben die Entwickler gedacht. Bluetooth-Geräte weisen sich gegenseitig mit einem Challenge/Response-Mechanismus aus und kodieren Datenströme mit Schlüsseln von bis zu 64 Bit Länge. Abgesehen davon haben es Mithörer wegen der großen Zahl möglicher Sprungfolgen schwer, sich in ein Piconet einzuklinken.
Eine Mitgliedschaft in der Special Interest Group ist für Unternehmen der EDV-Branche aus zweierlei Hinsicht interessant. Zum einen erhalten Entwickler die Gelegenheit, die Spezifikation nach ihren Vorstellungen mitzugestalten. So ist von den Gründern der Gruppe die Firma Ericsson für weite Teile des Baseband-Protokolls verantwortlich, während die Module für die PC-Integration von Toshiba und IBM stammen, Intel Wissen über integrierte Schaltungen einbringt und Nokia Software für Mobiltelefone liefert. Zum anderen bekommen Teilnehmer Zutritt zu den Vorabversionen des Standards und können frühzeitig mit der Entwicklung von Bluetooth-konformen Geräten und Programmen beginnen. Wer sich in die Gruppe aufnehmen lassen will, besucht die Bluetooth-Web-Site und schickt unter dem Link "Members" eine E-Mail mit verschiedenen Angaben an eines der fünf Gründungsmitglieder. Kurz darauf erhält der Bewerber in elektronischer Form zwei Vertragsformulare, die er unterschrieben per Post zurückschickt. Das eine, genannt "Adopters Agreement", sichert dem Teilnehmer die gebührenfreie Benutzung der Spezifikation für eigene Produkte, die ein Bluetooth-Label tragen dürfen. Wie das lauten wird, heißt es dort - denn Bluetooth ist lediglich ein vorläufiger Codename des Projekts -, entscheidet Ericsson. Die Vertragsanlage "Early Adopter Amendment" verpflichtet jene, die vor der Veröffentlichung des Standards beitreten, die Dokumente vertraulich zu behandeln.
Damit Produkte das Bluetooth-Label erhalten, müssen sie nicht nur das Baseband-Protokoll unterstützen. Je nach ihrem Einsatzgebiet müssen sie auch mit Protokollen der Anwendungsebene arbeiten und verschiedene Datenobjekte integrieren. Mobiltelefone zum Beispiel sollten mit PCs oder PDAs elektronische Visitenkarten des V-Card-Standards austauschen, wohingegen ein Kopfhörer weniger Aufgaben zu erledigen hat. Bluetooth-Geräte bauen dabei nicht nur selbständig Verbindung zu ihren Kollegen auf, sie erkennen auch, mit welchen Fähigkeiten diese ausgestattet sind.
Die Datenrate eignet sich eher für Anwendungen mit seltenem Datenaustausch in meist kleinem Umfang. So bildet Bluetooth keine Konkurrenz zu Wireless-LANs (WLANs), da dort inzwischen Bandbreiten von 11 MBit/s eingeführt wurden. Die wesentlichen Bluetooth-Applikationen, die in Betrieben von Mitarbeitern angenommen werden, bestehen aus unternehmenseigen Anwendungen wie Messaging, Knowledge Management (Unwired Portal), Datenbankabfragen usw. sowie dem Zugang zum Internet.
mit freundlicher Unterstützung von Herrn Prof. Jürgen Plate